

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code: PROBABILITY & STATISTICS (18HS0835)

Year &Sem: II-B.Tech&I-Sem

Branches: MECH, CSE, CS&IT

Regulation: R18

UNIT -I

1. a) If
$$P(A) = \frac{1}{2}$$
, $P(B) = \frac{1}{4} P(A \cap B) = \frac{1}{8}$ then $P(A \cup B)$.

b) If
$$P(A^c) = \frac{3}{8} P(B^c) = \frac{1}{2}$$
 and $P(A \cap B) = \frac{1}{4}$ then find $P(\frac{A}{B})$.

[2 M]

c) State Bayes theorem.

d) If the Probability density of a random variable is given by $f(x) = \begin{cases} k(1-x^2), & \text{for } 0 < x < 1 \\ 0, & \text{elsewhere} \end{cases}$

Find the value of k. [2 M]

e) A random variable X has the following probability function

X	1 2		3	4	5	6	8	
P(x)	1/36	2/36	3/36	4/36	5/36	6/36	7/36	8/36

Find the value of $P(x \le 2)$

[2 M]

- 2. a) A class consists of 6 girls and 10 boys. If a committee of 3 is chosen at random from the class, Find the Probability that (i) 3 boys are selected (ii) exactly 2 girls are selected [4 M]
 - b) Two cards are selected at random from 10 cards numbered 1 to 10. Find the probability that the sum is even if (i) the two cards are drawn together. (ii) The two cards drawn one after other with replacement. [6 M]
- 3. a) Three students A, B, C are in running race. A and B have the same Probability of winning and each is twice as likely to win as C. Find the Probability that B or C wins [5 M]
 - b) Determine (i) P(B/A) (ii) P(A/B) if A and B are events with $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{4}$, $P(A \cup B) = \frac{1}{2}$. [5 M]

4. a) In a certain town 40% have brown hair, 25% have brown eyes and 15% have both brown hair and brown eyes. A person is selected at random from the town.

- i) If he has brown hair, what is the probability that he has brown eyes also?
- [6 M]ii)If he has brown eyes, determine the probability that he does not have brown hair?
- b) The probability that students A, B, C, D solve the problem are $\frac{1}{3}$, $\frac{2}{5}$, $\frac{1}{5}$ and $\frac{1}{4}$ respectively If

all of them try to solve the problem, what is the probability that the problem is solved. [4M]

5. Two dice are thrown. Let A be the event that the sum of the point on the faces is 9. Let B be the event that at least one number is 6. Find (i) $P(A \cap B)$ (ii) $P(A \cup B)$ (iii) $P(A^c \cup B^c)$ (iv) $P(A^c \cap B^c)$

$$(v) P(A \cap B^c)$$
 [10 M]

- 6. In a certain college 25% of boys and 10% of girls are studying mathematics. The girls Constitute 60% of the student body. (a) What is the probability that mathematics is being studied? (b) If a student is selected at random and is found to be studying mathematics, find the probability that the student is a girl? (c) a boy [10 M]
- 7. Two dice are thrown. Let X assign to each point (a,b) in S the maximum of its numbers i.e., X(a, b) = max(a, b). Find the probability distribution. X is a random variable With $X(s) = \{1,2,3,4,5,6\}$. Also find the mean and variance of the distribution. [10 M]

8. A random variable X has the following probability function

X	0	1	2	3	4	5	6	7
P(x)	0	K	2K	2K	3K	\mathbf{K}^2	$2K^2$	$7K^2+K$

Determine (i) K (ii) Evaluate $P(X \ge 6)$ and P(0 < X < 5) (iii) if $P(X \le K) > 1/2$, find the minimum value of K (iv) variance.

[10 M]

[5 M]

- 9. A) Find the mean and variance of the uniform probability distribution given by $f(x) = \frac{1}{x}$ for x = 1, 2, ..., n.
 - b) If a random variable has a Probability density f(x) as $f(x) = \begin{cases} 2e^{-2x}, & for \ x > 0 \\ 0, & for \ x \le 0 \end{cases}$

Find the Probabilities that it will take on a value (i) Between 1 & 3 (ii) Greater than 0.5 [5 M]

10. Probability density function of a random variable X is $f(x) = \begin{cases} \frac{1}{2} \sin x, & \text{for } 0 \le x \le \pi \\ 0, & \text{elsewhere} \end{cases}$. Find the mean,

mode and median of the distribution and also find the probability between 0 and $\frac{\pi}{2}$. [10 M]

UNIT-II

1. a) Define Binomial distribution.

[2 M]

b) A fair coin is tossed six times. Find the Probability of getting four heads.

[2 M]

c) Define Poisson distribution.

[2 M]

d) If a bank received on the average 6 bad cheques per day, find the probability that it will receive 4 bad cheques on any given day.

[2 M]

e) Define Normal distribution.

[2 M]

2. a) Derive mean and variance of Binomial distribution.

[6 M]

b) 20% of items produced from a factory are defective. Find the probability that in a sample of 5 Chosen at random (i) one is defective (ii) p(1 < x < 4)

[4 M]

3. a) Fit a Binomial distribution to the following frequency distribution:

[8 M]

x	0	1	2	3	4	5
f	2	14	20	34	22	8

b) The mean and variance of a binomial distribution are 4 and $\frac{4}{2}$. Find $p(X \ge 1)$.

[2M]

a) Out of 800 families with 5 children each, how many would you expect to have (a) 3 boys (b) 5 girls(c) either 2 or 3 boys. Assume equal probabilities for boys and girls.

b) Two dice are thrown five times. Find the probability of getting 7 as sum i) at least once

[6M]

(ii) p(1 < x < 5)

[4M] [6 M]

5. a) Derive mean and variance of poisson distribution. b) If 2% of light bulbs are defective. Find the probability that (i) At least one is defective

(ii) p(1 < x < 8) in a sample of 100

[4 M]

6. a) Fit a Poisson distribution to the following data

[8 M]

- 4 5 Total 0 2 3 142 156 69 27 400
- b) If the mean of a Poisson distribution is 1.8 then find p(X > 1).

[2M]

- 7. a) An insurance agent policies of 5 men all of identical age and good in health. The probability that a man of this age will be alive 30 years is 2/3. Find the probability that in 30 years.
 - (i) At least one man (ii) Almost three will be alive

[6M]

b) If X is a Poisson variate such that $3P(X=4) = \frac{1}{2}P(X=2) + p(X=0)$,

find (i) the mean (ii) $P(X \le 2)$

[4 M]

8. Derive mean and variance of Normal distribution.

[10 M]

9. Find the mean and variance of a Normal distribution in which 7% of items are under 35 and 89% are under 63.

[10 M]

10. In a sample of 1000 cases, the mean of certain test is 14 and standard deviation is 2.5. Assuming the distribution to be normal find (i) how many students score between 12 and 15. (ii) How many students score above 18? (iii) How many students score below 18? [10 M]

UNIT-III

1. a) The weights of 6	competitors in a	game are given below	58,62,56,63,55,61kgs.

Find arithmetic mean of weight of competitors.

[2M]

b) Find the median of the following values 26, 8, 6,12,15,32.

- [2 M]
- c) Obtain mode of the values 10,12,15,20,12,16,18,15,12,10,16,20,12,24.
- [2 M]

d) Write the formulas for correlation, rank correlation

[2 M]

e) Write the formulas for the lines of regression X on Y and Y on X.

[2 M]

2. a) F	ind arithmet	tion method	[5M]			
	Marks	10-20	20-30	30-40	40-50	50-60
	frequency	5	8	25	22	10

b) Find the median to the following data

[5M]

X	5	8	11	14	17	20	23
f	2	8	12	20	10	6	3

3. a) Find the median to the following data

•	ind the median to the following data									
	Class intervals	40-50	50-60	60-70	70-80	80-90				
	frequency	5	12	23	8	2				

b) Find arithmetic mean to the following data

X	1	2	3	4	5
f	5	8	10	12	6

4. a)Find mode to the following data

[5M]

X	0-10	10-20	20-30	30-40	40-50	50-60	60-70
F	4	13	21	44	33	22	7

b) The first four moments of a distribution about the value 5 of the variables are 2, 20, 40 and 50. Calculate mean, variance, β_1 and β_2 of the distribution. [5M]

5. Compute Karl Pearson and Bowley's coefficient of Skewness to the following data [10M]

Class intervals	0-10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100
frequency	2	6	11	20	40	75	45	25	18	8

6. Compute the first four central moments to the following data and also find Sheppard's correction,

 β_1 And β_2 [10M]

Class	0-10	10-20	20-30	30-40	40-50	50-60	60-70
intervals							
frequency	2	8	12	40	20	15	3

7. a)Calculate correlation coefficient to the following data

[5M]

-	,										[· - J
	X	10	15	12	17	13	16	24	14	22	20
	Y	30	42	45	46	33	34	40	35	39	38

b) Obtain the rank correlation coefficient for the following data:

[5M]

0, 00	s) setum the runk correlation coefficient for the fone wing data.									
X	48	60	72	62	56	40	39	52	30	
Y	62	78	65	70	38	54	60	32	31	

8. a)Ten competitors in a musical test were ranked by the three judges A,B and C in the following [5M] order:

uci.										
Ranks by A	1	6	5	10	3	2	4	9	7	8
Ranks by B	3	5	8	4	7	10	2	1	6	9
Ranks by C	6	4	9	8	1	2	3	10	5	7

[5M]

[5M]

Using rank correlation coefficient method, discuss which pair of judges has the nearest approach to common likings in music.

b) If the two lines of regression are 4X-5Y+30=0 and 20X-9Y-107=0 which of these is the line of regression of X on Y. Find r and σ_y when $\sigma_x = 3$

9. a) Obtain the rank correlation coefficient for the following data:

٠	u) O0	tani tiic i	ank corre	nation co	CITICICITE .	ioi the io	nowing d	iaia .			
	X	68	64	75	50	64	80	75	40	55	64
	Y	62	58	68	45	81	60	68	48	50	70

b) Find two regression equations from the following data:

X	10	25	34	42	37	35	36	45
Y	56	64	63	58	73	75	82	77

11. a) Calculate the correlation coefficient for the following heights(in inches) of fathers(X) and their sons(Y) [6M]

X	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

b) From the following regression equations, calculate \overline{X} , \overline{Y} and r 20X-9Y=107, 4X-5Y=-33

<u>UNIT –IV</u>

1. a) write normal equations to y = ax + b

[2M]

b) write normal equations to $y = ax^2 + bx + c$

[2M]

c) Define parameters statistics

[2M]

d) Define Null hypothesis, Alternative hypothesis.

e) If n = 100, $\sigma = 5.1$, x = 21.6 construct 95% confidence interval for population mean μ .

[2M]

2. a)By method of least squares fit a straight line to the following data

[2M] [5M]

X 27 14 40 55 68 y

b) Fit a second degree polynomial to the following data by method of least squares

[5M]

X	0	1	2	3	4
у	1	1.8	1.3	2.5	6.3

3. a) Fit a parabola to the data given below

[5M]

X	1	2	3	4	5	4
У	10	12	8	10	14	

b) Obtain a relation of the form $y = ab^x$ for the following data by method of least squares

[5M]

X	2	3	4	5	6
у	8.3	15.4	33.1	65.2	127.4

4. a) Find the curve of best fit of the type $y = ae^{bx}$ to the following data by method of least squares

[5M]

X	1	5	7	9	12
у	10	15	12	15	21

b) Fit a straight line y = ax + b for the following data

[5M]

X	6	7	7	8	8	8	9	9	10
У	5	5	4	5	4	3	4	3	3

5. a) Fit a $y = ax^b$ to the following data, also calculate y(2.5)

[5M]

X	1	2	4	6
У	6	4	2	2

b) Fit a second degree polynomial to the following data by method of least squares

[5M]

X	0	1	2	3	4
y	1	5	10	22	38

- 6. a) A sample of 400 items is taken from a population whose standard deviation is 10. The mean of the sample is 40. Test whether the sample has come from a population with mean 38.
 - b) The means of two large samples of sizes 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of standard deviation 2.5 inches? [5M]
- 7. a) It is claimed that a random sample of 49 tyres has a mean life of 15200 km. This sample was drawn from a population whose mean is 15150kms and standard deviation of 1200 km. Test the Significance at 0.05 level. [5M]

b) Samples of students were drawn from two universities and from their weights in kilograms, mean and standard deviations are calculated and shown below. Make alarge sample test to test the Significance of the difference between the means. [5M]

	Mean	S.D	Size of the sample
University A	55	10	400
University B	57	15	100

- 8. a) In a random sample of 125 cool drinkers 68 said they prefer thumsup to pepsi. Test thus null hypothesis P = 0.5 against the alternative hypothesis is P > 0.5
 - b) On the basis of their total scores, 200 candidates of a civil service examination are divided in to two groups, the upper 30% and the remaining 70% consider the first question of the examination. Among the first group,40 had correct answer, where as among the second group, 80 had correct answer. On the basis of these results, can one conclude that the first question is not good at discriminating ability of the type being examined here? [5M]
- 9. a) A die was thrown 9000 times and of these 3220 yielded a 3or 4. Is this consistent with the hypothesis that the die was unbiased? [5M]
 - b) In two large populations, there are 30%, and 25% respectively of fair haired people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the two populations.
- 10. a) A random sample of size 50 has standard deviation 11.8 drawn from a normal population. can we assume that the sample has been drawn from the population with S.D 10. [5M] b) Two random samples of sizes 100 each are drawn from two populations with the standard
 - deviations 2.823 and 1.548. Test the significance difference between the sample standard deviations, if the population standard deviation is 2. [5M]

<u>UNIT-V</u>

1. a) Define degrees of freedom.

[2M]

b) Define Student's t-test.

[2M]

c) Write the formula for Paired t-test.

[2M]

d) Write the formula for Student's t-test for difference of means.

[2M]

e) Define Chi-square test.

[2M]

2. a) A sample of 26 bulbs gives a mean life of 990 hours with a S.D of 20 hours. The manufacturer claims that the mean life of bulbs is 1000 hours. Is the sample not up to the standard. [5M]

b) A pair of dice are thrown 360 times and the frequency of each sum is indicated below:

[5M]

Sum	2	3	4	5	6	7	8	9	10	11	12
Frequency	8	24	35	37	44	65	51	42	26	14	14

Would you say that the dice are fair on the basis of the chi-square test at 0.05 level of significant?

3. To examine the hypothesis that the husbands are more intelligent than the wives, an investigator took a sample of 10 couples and administered them a test which measures the I.Q. The results are as follows:

Husbands	117	105	97	105	123	109	86	78	103	107
Wives	106	98	87	104	116	95	90	69	108	85

Test the hypothesis with a reasonable test at the level of significant of 0.05 and also calculate F-

- 4. A random sample of 10 boys had the following I.Q's: 70, 120, 110, 101, 88,83,95,98,107 and 100
 - a) Do these data support the assumption of a population mean I.Q of 100?

[10M]

b) Find a reasonable range in which most of the mean I.Q values of samples of 10 boys lie.

5. a) Blood pressure of 5 women before and after intake of a certain drug are given below

[5M]

Before	110	120	125	132	125
After	120	118	125	136	121

Test whether the significant change in blood pressure at 1% level of significance.

b. In one sample of 8 observations the sum of the squares of deviations of the sample values from the sample was 84,4 and in the other samples of 10 observations it was 102.6. Test whether this difference is significant at 5% level [5M]

6. Two random samples reveal the following results:

[10M]

Sample	Size	Sample Mean	Sum of squares of deviations from the mean
1	10	15	90
2	12	14	108

Test whether the samples came from the same normal population.

7. The nicotine in milligrams of two samples of tobacco were found to be as follows.

[10M]

Sample A	24	27	26	23	25	
Sample B	29	30	30	31	24	36

Can it be said that the two samples have come from the same normal population.

8. a) A die is thrown 264 times with the following results. Show that the die is biased.

 $(\psi^2 = 11.07 \text{ at } 5 \text{ d.f } \& 5\% \text{ L.S})$

[5M]

Number	1	2	3	4	5	6
on the die						
Frequency	40	32	28	58	54	52

b) Scores obtained in a shooting competition by 10 soldiers before and after intensive training are given below: [5M]

Before	67	24	57	55	63	54	56	68	33	43
After	70	38	58	58	56	67	68	75	42	38

Test whether the intensive training is useful at 0.05 level of significance.

- 9. a) Find the maximum difference that we can expect with probability 0.95 between the mean of samples of sizes 10 and 12 from a normal population if their standard deviations are found to be 2 and 3 respectively.
 - b) The following table gives the classification of 100 workers according to sex and nature of work. Test whether the nature of work is independent of the worker ($\psi^2 = 3.84$ at 1d.f) [5M]

	Stable	Unstable	Total
Males	40	20	60
Females	10	30	40
Total	50	50	100

10.a) Samples of two types of electrical light bulbs were tested for length of life and following data were obtained [5M]

	Type I	Type II
Sample numbers	8	7
Sample mean	1234 hrs	1036 hrs
Sample S.D	36 hrs	40 hrs

Is the difference in the means sufficient to warrant that type I is superior to type II regarding length

b) The number of automobile accidents per week in a certain community is as follows: 12, 8, 20, 2, 14, 10, 15, 6, 9, 4. Are these frequencies in agreement with the belief that accident conditions were the same during this 10 week period.

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road — 517583

BIT BANK

Subject with Code: PROBABILITY & STATISTICS (18HS0835) Year & Sem: II-B. Tech & I-Sem	Branches:MECH,CSE,CS&IT Regulation: R18

$P(A' \cap B) = \underline{\hspace{1cm}}$		<u>UNIT-I</u>		r	1
	B) $P(B)-P(A'\cap B)$	C) $P(A)-P(A\cap B)$	D) $P(B)-P(A)$	$A \cap B$	J
` ' ` ` ' '	random variable and $Y = a$,]
	/ \	C) $aE(X)-b$	D) $aE(X)$		
If a dice is thrown the	en probability of getting 4	or 5 is		[]
A) $\frac{1}{6}$	B) $\frac{5}{6}$	C) $\frac{1}{3}$	D) $\frac{2}{3}$		
If $P(A) = \frac{1}{3}, P(B) =$	$=\frac{1}{4}$, $P(A \cup B) = \frac{1}{3}$ then	$P(B_A) = $		[]
A) 1	B) $\frac{1}{6}$	C) $\frac{3}{4}$	D) $\frac{2}{3}$		
If a dice is thrown the	en probability of getting 5	or 6 is		[]
A) $\frac{1}{6}$	B) $\frac{5}{6}$	C) $\frac{1}{3}$	D) $\frac{2}{3}$		
The chance that a ne	on-leap year contains 53	3 Mondays is		[]
A) $\frac{1}{7}$	B) $\frac{2}{7}$	C) $\frac{1}{365}$	D) $\frac{2}{365}$		
If K is any constant th	nen E(K) =			[]
A) 0	B) K	C) 1	D) -1		
	the probability is	C) 1	D) 1	[]
A) 0 If A and B are mutual	B) 0.1 lly exclusive events then	· · · · · · · · · · · · · · · · · · ·	D) -1	г	1
A) $P(A) + P(B)$	B) $P(B)-P(A)$	$\begin{array}{cccc} P(A \cup B) - \underline{\hspace{1cm}} \\ C) P(A) - P(A \cap B) \end{array}$	D) $P(B)-P(B)$	$(A \cap B)$	J
	$= \frac{1}{4}, P(A \cup B) = \frac{1}{3} \text{ then } .$, ()	[]
A) $\frac{1}{2}$	B) $\frac{1}{6}$	C) $\frac{3}{4}$	D) $\frac{2}{3}$		
. If X and Y are indepe	endent random variable tl	hen $E(XY)=$		ſ	1
A) $E(X) + E(Y)$	B) $E(X) - E(Y)$	C) $E(X)$ $E(Y)$	D) $YE(X)$	-	-
` , , , , ,	The probability of getting	g at least one six is	[]	
A) $\frac{7}{36}$	B) $\frac{10}{36}$	C) $\frac{11}{36}$	D) $\frac{5}{36}$		
3. If K is any constant th	D) II			[]
A) 0	B) K b and $P(A \cap B) = c$ then	C) 1 $p(A^C + P^C)$	D) -1	г	1
. II P(A)=a. P(B)=1	p and $P(A) \mid B \mid = C$ then	$F(A \cup B) \models$		1	1

C) 1-c

D) c

Probability & Statistics

B)1-b

15.	$P(A' \cap B') = \underline{\hspace{1cm}}$			[]	
		B) $1-P(A\cap B)$	C) $1-P(A'\cap B)$	D) $1-(A\cap B')$	
16.	` ,	ent is always between	` ,		
	A) -1 and 0	B) -1 and 1	C) 0 and1	D) -1	
17.	If X is a random varia	ble then $E(2X) = $		[]	
	A) $E(X)$	B) $-E(X)$	C) $2E(X)$	D) $4E(X)$	
18.	The probability that a	leap year will have 53	Tuesdays is	[]	
	A) $\frac{1}{7}$	B) $\frac{2}{7}$	C) $\frac{1}{365}$	D) $\frac{2}{365}$	
	7	7	365	365	
19.	If A and B are mutually	exclusive events then F	$P(A \cap B) = \underline{\hspace{1cm}}$	[]	
	A) $P(A)+P(B)$		C) 0	D) $P(A)P(B)$	
20.	If X is a continuous ran	ndom variable and $Y = aX$	X + b constant then $V(Y)$)=[
		B) $a^2 V(X)$		D) $a^2 V(X) + b^2$	
21.	Two dice are thrown. T	he probability of getting	at least one five is	. []	
	A) $\frac{7}{36}$	B) $\frac{10}{36}$	C) $\frac{11}{36}$	D) $\frac{5}{36}$	
			30	36	
22.		$, P(A \cap B) = c \text{ then } P(A \cap B)$	$A^{c} \cup B^{c} = \underline{\qquad}$	[]	
	A) <i>c</i>	B) 1+c	C) 1-c	D) 1	
23.	An event that must oc A) a certain		C) an impossible	D) a finite	
24	A) a certain $P(A' \cup B') = \underline{\hspace{1cm}}$	•	C) an impossible		
۷٦.	A) $P(A) - P(A' \cap B)$	B) $1-P(A \cup B)$	C) $P(A) = P(A B)$	D) $1-P(A\cap B)$	
25.		probability of getting 1 of	` , ` , ` ,		
	1	B) $\frac{5}{6}$	1	2	
	A) $\frac{1}{6}$	$\frac{6}{6}$	C) $\frac{1}{3}$	D) $\frac{2}{3}$	
26.	If K is any constant the			[]	
27	A) 0	B) 2 k	C) k	D) -1	
21.	4	y year contains 52 Mor	4		
	A) $\frac{1}{7}$	B) $\frac{2}{7}$	C) $\frac{1}{365}$	D) $\frac{2}{365}$	
	·	·	, ,		
28.	If A and B are mutually	γ exclusive events then γ	$P(A' \cup B') = \underline{\qquad}$ C) $1 - P(A \cap B)$		
	A) 1	B) 0			
29.	If X and Y are indepen	dent random variable the B) $E(X) - E(Y)$	en $E(X+Y)=$	[]	
	A) $E(X) + E(Y)$	B) $E(X) - E(Y)$	C) $E(X)$ $E(Y)$	D) $YE(X)$	
30.	If $P(A) = \frac{1}{2}, P(B) = \frac{1}{2}$	$\frac{1}{4}$, $P(A \cap B) = \frac{1}{2}$ then $P(A \cap B) = \frac{1}{2}$	P(B/A) =	[]	
	2	B) $\frac{1}{6}$	C) 1	D) 0	
31.	If X is a continuous ran	ndom variable and $Y=2$.	X + 3 constant then $E(Y)$)=[]	
	A) $2E(X)+3$	B) $E(X) + 3$	C) $2E(X)-3$	D) $2E(X)$	
32.	Two dice are thrown. T	the probability of getting	at least one four is	[]	

A \	7
A)	36

B)
$$\frac{10}{36}$$

C)
$$\frac{11}{36}$$

D)
$$\frac{5}{36}$$

33. If
$$P(A)=a$$
, $P(B)=b$ and $P(A)=a$

33. If
$$P(A)=a$$
, $P(B)=b$ and $P(A \cap B)=c$ then $P(A^c)=$

]

34.
$$P(A \cap B') =$$

A)
$$P(A)-P(A'\cap B)$$
 B) $P(B)-P(A'\cap B)$ C) $P(A)-P(A\cap B)$

B)
$$P(B) - P(A' \cap B)$$

C)
$$P(A) - P(A \cap B)$$

D)
$$P(B)-P(A\cap B)$$

35. If a dice is thrown then probability of getting 2 or 3 is

1

]

]

1

A)
$$\frac{1}{6}$$

B)
$$\frac{5}{6}$$

C)
$$\frac{1}{3}$$

D)
$$\frac{2}{3}$$

36. Event b is said to be independent of event a if $P(B_A) =$

B)
$$P(B)$$

C)
$$P(A)$$

A) P(A)P(B)

37. If K is any constant then V(2K) =

B) K

C) 1

38. The probability of an event that must occur is _

B) 0.1

D) -1

39. If A and B are independent events then $P(A \cap B) =$ A) P(A)P(B)

B)
$$P(B)-P(A)$$

D)
$$P(A')P(B)$$

40. If
$$P(A) = \frac{1}{4}$$
, $P(B) = \frac{1}{2}$, $P(A \cap B) = \frac{1}{4}$ then $P(B/A) =$ ______

B)
$$\frac{1}{6}$$

C)
$$\frac{3}{4}$$

D)
$$\frac{2}{3}$$

41. If X is a continuous random variable and Y=2X+3 constant then V(Y)=______

A) 4V(X)+3

B) 4V(X)

C) 2V(X)+3

D) 4V(X)+9

42. Two dice are thrown. The probability of getting at least one four is___]

B) $\frac{10}{36}$

C) $\frac{11}{36}$

43. If X is a random variable then E(6X) =

]

1

A) E(X)

B) -E(X)

D) 36E(X)

44. If P(A)=a, P(B)=b, $P(A \cap B)=c$ then $P(A \cup B)=$ ____ A) a+b+c

B) a+c

1.	The mean of uniform pr	cobability distribution $f($	$(x) = \frac{1}{n}$ for $x = 1, 2, 3,, n$	is	[]
				D) $\frac{n+1}{2}$		
2.	In a Poisson distribution A) 0	n if $2P(x=1)=P(x=2$ B) 4		D) -4	[]
3.	The mean of the Norma A) 0	•	C) μ ²	D) 1]]
4.		I distribution is symmetri B) $x = \mu$	•	,]]
5.		distribution is 8 and varia B) 6	ance is 6, the mode of the	ŕ]]
6.	The area under the who	le normal curve is	<u>C)it</u>	D) 1	[]
7.	Mean of the binomial A) 0.33	distribution is 6 and va B) 1.33	riance is 2 then "n" is _ C) -0.33	D) -1.33]]
8.		variate z is =			[]
	A) 0	B) $\frac{x+\mu}{\sigma}$	C) $\frac{x-\sigma}{\mu}$	D) $\frac{x-\mu}{\sigma}$		
9.	If the mean of a poisson A) 8	distribution is 8, then its B) -8		D) -1	[]
10.		n probability distribution	,	ŕ]]
		B) $\frac{n^2-1}{6}$	71	D) $\frac{n^2 - 1}{12}$		
11	The area under the who	le normal curve is	12	12	[1
	A) 0	B) 0.1	C) unity	D) -1	L	1
12.	The variance of the Nor	,	•	,	ſ	1
	A) 0	B) σ	C) σ^2	D) 1		•
13.	If mean of the binomial	distribution is 3 and varia	ance is $\frac{9}{4}$, the value of n	is]]
	A) 12	B) 10		D)3		
	The mode of normal dis A) 0	B) μ C) $x \neq$	*		[]
15.	In a Poisson distribution A) 0	n if $2P(x=0) = P(x=2)$ B) 2		D) -4	[]
16.	If mean of the Poisson A) 6	n distribution is 6 then t B) 5	he variance is	D) 0]]
17.	The graph of the normal A) 0	I distribution is symmetri B) $x = \mu$	ical with respect to the lin C) $x - \mu$	ne D) 1	[]
18.	If the mean of a poisson A) 8	distribution is 8, then its B) -8		D) -1]]
19.	The standard normal cu A) shape		C) not symmetrical	D) symmetrica	[.1]
20.	If the mean of a poisson	distribution with parame	ter $\lambda = 2$ is		[]
	Probability & Statistic	es				

	A) 0	B) 2	C) -2	D) 1				
21. If mean of the binomial distribution is 8 and variance is 6, the mode of the distribution is [
	A) 8	B) 6	C) 7	D) 5				
22.	The area under the who	le normal curve is	 -		[]		
	A) 0	B) 0.1	C) unity	D) -1				
23.	In a Poisson distribution	n if $3P(x=2) = P(x=4)$	1) then the variance is		[]		
	A) 0	B) 4	C) 2	D) 6				
24.	24. Mean of the binomial distribution is 6 and variance is 2 then mode= [
	A) 6	B) 5	C) -6	D) -5				
25.	The standard normal				[]		
	A) 0	B) $\frac{x+\mu}{\sigma}$	C) $\frac{x-\sigma}{}$	D) $\frac{x-\mu}{\sigma}$				
		σ	μ	σ				
26	The total area of under	the standard normal curve	n ic		г	1		
20.	A) 0	the standard normal curve B) $x = \mu$	C) $x \neq \mu$	D) 1	l	J		
27		•	•	2) 1	г	1		
21.	A) np	omial distribution is B) -np	C) npq	D) - npq	[J		
)p	2) np	c)pq	2)				
20	The verience of uniform	nrobability distribution	$f(x) = \frac{1}{1}$ for $x = 1.2.2$	n ic	r	1		
20.	The variance of uniform	n probability distribution	$\int (x)^{-1} \int (x-1,2,3) dx$	/1 18	[J		
	A) 0	B) $\frac{n^2-1}{6}$	C) $\frac{n^2+1}{12}$	$n^2 - 1$				
	71) 0	6	$\frac{12}{12}$	$\frac{12}{12}$				
29.	If the variance of a pois	son distribution with para	ameter $\lambda = 2$ is		[]		
	A) 0	B) 2	C) -2	D) 1				
30.	The mode of normal dis	stribution is			[1		
	A) 0	Β) μ	C) $x \neq \mu$	D) 1	-	-		
			. 10		_	_		
31.	If mean of the binomial	distribution is 5 and varia	ance is $\frac{1}{3}$, the value of	n is	[]		
	A) 12	B) 10	C) 11	D) 15				
32.	The area under the who	le normal curve is	,	ŕ	Γ	1		
	A) 0	B) 0.1	C) unity	D) -1		-		
33.	In a Poisson distribution	n if $3P(x=2)=P(x=4)$	1)then the mean is		[]		
	A) 0	B) 4	C) 2	D) 6	-	-		
34.		s completely determined			[]		
	A)shape	B) standard deviation	C) symmetric	D) not symme	tric			
35.	If the mean of a binomia		<u></u>		[]		
	A)np	B) -np	C)npq	D) -npq				
36.		n distribution is 6 then t		D) 0	[]		
	A) 6	B) 5	C) -6	D) 0				

		UNIT-III			
1. Number of observations		thmetic mean is 15 then		[]
A) 152. In arithmetic mean, sum	B) 450 a of deviations of all rec	C) 200 orded observations mus	D) 45 t always be	[]
A) 0	B) 1	C) 2	D) 3		
3. Arithmetic mean is 25 a A) 14	nd all sum of observation B) 450	ons is 350 then number of C) 200	of observations are D) 45	[]
4. Arithmetic mean is 12 a	*		,	[1
A) 15	B) 450	C) 240	D) 45	L	J
5. Arithmetic mean is mult	,	,	,	[1
A) absolute mean devi	-	olute median deviation		L	_
C) relative mean devia	tion D) rela	tive median deviation			
5. The arithmetic mean o	f a set of 10 numbers i	s 20. If each number is	first multiplied by 2 a	nd thei	n
increased by 5, then w	hat is the mean of new	numbers		[]
A) 20	B) 25	C) 40	D) 45		
6. Sum of mode and med	dian of the data			[]
A) 26	B) 31	C) 36	D) 25		
7. The arithmetic mean o	f the first ten whole nu	ımbers is		[]
A) 5.5	B) 5	C) 4	D) 4.5		
8. Find mode value of 2,3,4				[]
A) 3	B) 4	C) 2	D) 5		
9. Find median of 1,2,3,4,5				[]
A) 5	B) 4	C) 2	D) 7	-	,
10. Moments about μ_1	D) 0	C) 2	D) 45	[J
A) 1	B) 0	C) 2	D) 45	г	1
11. $\beta_1 =$	2	2		L]
A) μ_1/μ_2	B) $\frac{\mu_3^2}{\mu_2^3}$	C) $\frac{\mu_1^2}{\mu_2^3}$	D) None		
10 0	μ_2	μ_2		г	1
12. $\beta_2 =$	2			[J
A) μ_1/μ_2	B) $\frac{\mu_3^2}{\mu_2^3}$	C) $\frac{\mu_4}{\mu_2^2}$	D) None		
13. If $\beta_2 = 3$ and $\gamma_2 = 0$ then	the curve is	• 2		Г	1
A) Mesocurtic	B) Platykurtic	C) Leptokurtic	D) None	L	ı
14.Find mode value of 2,3	-	, I	,	[1
A) 3	B) 4	C) 2	D) 5	-	-
15.Find median of 1,2,3,4,	5,6,7,8,9			[]
A) 5	B) 4	C) 2	D) 7		
16. $\mu_1^1 =$				[]
_		-			
A) x - A	B) $x + A$	C) <i>x</i>	D)0	_	
17. If $\beta_2 < 3$ and $\gamma_2 < 0$ the		C) 1	D \ V	[]
A) Mesocurtic	B) Platykurtic	C) Leptokurtic	D) None	r	,
18. Find β_1 where $\mu_3=3$,		C) 0.2	D) 0.224	L]
A) 1.125	B) 0.59	C) 0.2	D) 0.224	г	1
19. Find mode value of 3,4		C) 2	D) 5	L	J
A) 3 20. If $\beta_2 > 3$ and $\gamma_2 > 0$ the	B) 4	C) 2	ט (ע	ſ	1
A) Mesocurtic	B)Platykurtic	C)Leptokurtic	D)None	L	1
21. Find β_1 where μ_3 =4,	•	C/20ptoRuitie	2,110110	[1
A) 1.125	B) 0.59	C) 0.2	D) 0.224	L	1
, -	,	,	,		

			QUESTION BA	NK 2	2019	
22. Find median of 1, 2, 3 A) 5	3, 4, and 5 B) 4	C) 2	D) 3	[]	
23. Find μ_1^1 where $\bar{x} = 5$ A) 15		C) 200	D) 10	[]	
24. Find μ_1^1 where $x = 50$	ŕ	,	,	[]	
A) 15 25. Find β_1 where $\mu_3=5$		C) 200	D) 10	[]	
A) 1.125 26. Find μ_1^1 where $x = 1$:	B) 0.59 5 and A=5	C) 0.2	D) 0.224	[]	
A) 15 27. Find β_1 where $\mu_3 = 7$	B) 45	C) 200	D) 10	ſ]	
A) 1.125 28. Increase in one variab	B) 0.59	C) 0.2 e other variable then the	D) 0.224 correlation is	[]	
A) Positive	B) Negative	C) Uncorrelated	D) None	r		
29. Find μ_1^1 where $x = 10$ A) 15	0 and A=10 B)45	C)0	D)10	[]	
30. Find μ_1^1 where $x = 5$	50 and A=40 B)45	C)2	D)10	[]	
31. The arithmetic mean A)5.5	*	·	D)4.5	[]	
32. Increase in one variab A)Positive	,	e other variable then the	<i>'</i>	[]	
33.Increase in one variable A)Positive	_	other variable then the	*	[]	
34. There is no relation be A)Positive			D)None	[]	
35.Rank correlation is det A)α	noted by B)β	C)γ	D)ρ	[]	
36. Correlation coefficien A)α	Β)β	C)r	D)ρ	[]	
37. Find mean value of 1, A)2.4	B)2.5	C)2.6	D)2.7	[]	
38.Regression coefficient A) $r \frac{\sigma_x}{\sigma_x}$	•	C) $r \frac{\sigma_y}{\sigma_y}$	D)0	[]	
σ_y 39. Regression coefficien	B) $r \frac{\sigma_z}{\sigma_y}$	C) $r \frac{\sigma_y}{\sigma_x}$	<i>D</i>)0	ſ	1	
A)b _{xy} X b _{yx} 40. Regression coefficien	B) b_{xy} - b_{yx}	C) $b_{xy} + b_{yx}$	D) b_{xy}/b_{yx}	ſ]	
_	B) $r \frac{\sigma_z}{\sigma_y}$	C) $r \frac{\sigma_y}{\sigma_x}$	D)0	L	j	
<u>UNIT-IV</u>						
1. If $y = a_0 + a_1 x + a_2 x^2$ then the third normal equation by least squares method is $\sum x^2 y =$						
$A)na_0 + a_1 \sum x + a_1$	$_2\sum x^2$ B) $a_0\sum x^2$ +	$a_1 \sum x^3 + a_2 \sum x^4$		[]	
Probability & Statist	ics					

```
C)a_0 \sum x + a_1 \sum x^2 + a_2 \sum x^3 D)a_0 \sum x^2 + a_1 \sum x^4 + a_2 \sum x^3 2. If y = a + bx then first normal equation by least square method
is \sum y =
                                                                                                              1
                B)na + b \sum x C)\sum x + b \sum x^2 D) a \sum x + b \sum x^2
A)a + bx
3. If y = a + bx + cx^2 then the second normal equation is
                                                                                                     ſ
                                                                                                              1
A)a \sum x^2 + b \sum x^3 + c \sum x^4

B)na + b \sum x + c \sum x^2

C) a \sum x + b \sum x^2 + c \sum x^3

D) na + b \sum x^2 + c \sum x
4. If y = a_0 + a_1 x + a_2 x^2 then the first normal equation by least square method is \sum y = [
                                                                                                              1
                                          B) a \sum x + b \sum x^2 + c \sum x^3
A) na_0 + a_1 \sum x + a_2 \sum x^2
C) na + b \sum x D) a_0 \sum x + a_1 \sum x^2
5. If \sum x_i = 15, \sum y_i = 30, \sum x_i y_i = 110, \sum x^2 = 55 and y = a_0 + a_1 x then a_0 = 10
                                                                                                              1
                         B)1.52
                                                  C)1.2
6. If y = a_0 + a_1 x and \sum x = 15, \sum y = 30. \sum xy = 110, \sum x^2 = 55 then a^1 =
                                                                                                              1
7. If y = a + bx + cx^2 then first normal equation of below data is
                                                                                                     ſ
                                                                                                              ]
X \mid 0 \mid 1
                    3
y | 1 | 1.8 | 1.3 | 2.5 | 6.3
A) 12.9=5a+10b+30c
                                                   B) 15=5a+10b+31c
C) 15=5a+10b+29c
                                                  D) 35.1=5a+10b+28c
8. If y = a + bx + cx^2 then second normal equation of below data is
                                                                                                     1
X \mid 0 \mid 1
             2
y | 1 | 1.8 | 1.3 | 2.5 | 6.3
A) 37.1=8a+28b+100c
                                                           B)35.1=10a+28b+10c
C) 37.1=10a+30b+100c
                                                           D)37=10a+10b+28c
9. The power curve is _
                                                                                                              1
A) y = a + bx + cx^{2} B) y = ae^{x} C) y = ax^{b}
                                                                   D)y = a + bx
10. The probability of committing type-I error is denoted by
                                 B)1-\alpha
                                                                                    D)1-\beta
11. The probability of committing type-II error is denoted by
                                  B)1-\alpha
                                                                                    D)1-β
If n=144, \sigma=4&x=150 then 95% confidence interval for \mu is
                                                                                                              1
A) (149.35,150.65)
                        B)(139.7,140.2)
                                                  C)(172.1,182.12)
                                                                            D)(170.1,182.2)
12. In testing of significance for single proportion, then test statistic is
                                                                                                              1
13. Whether the test is one tailed or two tailed depends on ___ hypothesis
                                                                                                              1
                                 B) Alternative C)Simple
                                                                            D)None
14. When null hypothesis is accepted, then the result is said to be _
                                                                                                              1
A) Non significant
                                 B) Significant C) Error
15. When null hypothesis is rejected, then the result is said to be ___
                                                                                                              1
                                                                            D) None
A) Non significant
                                 B) Significant C) Error
16.If \bar{x} = 116, \mu = 120, \sigma^2 = 225 \& n = 100 then Z=
                                                                                                              1
                                                                   D)3.1
                                 B)0.92
                                                  C)1.85
A)2.2
17. Amoung 900 people in a state 90 are found to be chapathi eaters, The 99%
Confidence interval for the true proportion is
A)(0.07,0.13)
                         B)(0.8,0.12)
                                                  C)(0.8,1.2)
                                                                            D)None
18.A hypothesis is true, but is rejected, this is an error of type
                                                                                                              1
A)I
                                  B)II
                                                           C)I&II
                                                                            D)None
19. A hypothesis is false, but is accepted, this is an error of type
                                                                                                              ]
```

A)I B)II C)I&I	I D)None
20. The Z-test is applicable when the sample sizes are	
A) Small B) Equal C) Lar	rge D)None
21. Normal curve varies from	
A)- ∞ to ∞ B) 0 to ∞ C) - ∞ t	•
22. The value of $Z_{\frac{\alpha}{2}}$ at 5% level of significance is	[]
A)1.65 B)1.96 C)2.57 D)2.5	
23.In testing of significance for single mean then the test st	ratistic is []
A) $\frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}}$ B) $\frac{X-\mu}{\frac{\sigma}{\sqrt{n}}}$ C) $\frac{X-\mu}{\frac{\sigma}{n}}$ D)Nor	ne
$ \sqrt{n} $ $ \sqrt{n} $ $ \sqrt{n} $ $ \sqrt{n} $	r 1
24. The N.c is about Z=0 A) Symmetric B) Assymmetric C) Uniform	[] D)None
25.A sample of size 100 is taken whose standard deviation	
probability 0.95	
A) 0.8 B)0.7 C)1	D)0.98
$26.\text{If n}=100,\sigma=5.1,\bar{x}=21.6,95\%$ confidence interval for popular to the second se	,
A) (20.60, 22.59) B) (80.23, 83.76) C) (2.6	•
27. Find the value of the finite population correction factor	
for n=10&N=100	[]
A) 9.9 B) 0.99 C) 0.0	9 D) None
28.A sample of size 64 and mean 60 was taken from a pop	oulation whose S.d is10. Find 95%
confidence interval for the mean	[]
A) (55.57, 62.45) B)(57.55,45.62) C)(57.	55,62.45) D)None
29. The value of $Z_{\frac{\alpha}{2}}$ at 1% level of significance is	[]
A) 2.58 B) 1.96 C) 1.5	7 D) 2.5
30. The value of Z_{∞} at 1% level of significance is	[]
A) 2.98 B) 2.33 C) 1.5	
31. The value of Z_{∞} at 5% level of significance is	[]
A) 2.98 B) 2.33 C) 1.6	4 D) 2.51
32. If $n > 30$,distribution is used	[]
A) Z-test B) F-test C)t-test	$stD) \chi$ -test
33.In testing of two means the test statistic is	[]
$\frac{\overline{x}_1 - \overline{x}_2}{x_1 - x_2}$ $\frac{\overline{x}_1 - \overline{x}_2}{x_2 - x_2}$ $\frac{\overline{x}_1 - \overline{x}_2}{x_2 - x_2}$	$\frac{\overline{x_1} + \overline{x_2}}{x_1 + x_2}$
A) $\frac{x_1 - x_2}{\sqrt{\frac{\sigma_1^2 + \sigma_2^2}{n}}}$ B) $\frac{x_1 - x_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ C) $\frac{x_1 - x_2}{\sqrt{\frac{\sigma_1^2}{n_1} - \frac{\sigma_2^2}{n_2}}}$	$-D)\frac{1}{\sqrt{\sigma^2 - \sigma^2}}$
$\sqrt{\frac{\delta_1 + \delta_2}{\delta_1 + \delta_2}}$ $\sqrt{\frac{\delta_1}{\delta_1} + \frac{\delta_2}{\delta_2}}$ $\sqrt{\frac{\delta_1}{\delta_1} - \frac{\delta_2}{\delta_2}}$	$\frac{1}{\sqrt{\frac{\sigma_1}{\sigma_1} + \frac{\sigma_2}{\sigma_2}}}$
$\bigvee n \qquad \qquad \bigvee n_1 \qquad n_2 \qquad \bigvee n_1 \qquad n_2$	$\bigvee n_1 \qquad n_2$
34. If $n < 30$,distribution is used	[]
A) Z-test B) F-test C)t-test	$stD) \chi$ -test
35. If $n = 40$, $\bar{x} = 59.1$, $\sigma = 5.2$ $\mu = 57.4$ then $z =$. []
A) 2.06 B) 3.06 C) 4.0	
36. If $n = 400$, $\bar{x} = 40$, $\sigma = 10$, $\mu = 38$ then 95% confidence.	,
30. If $n = 400$, $x = 40$, $\theta = 10$, $\mu = 30$ then 75% confidence.	r 3
A) (2.06, 0.98)B) (39.02, 40.98) C) (2.06, 0.98)D) (2.0	[]
(2.00, 0.76)D) (37.02, 40.76) C) (2.00, 0.76)D) (2.0	-2 15 day 7
37. If $n_1 = 42$, $\overline{x_1} = 15$, $n_2 = 80$, $\overline{x_2} = 11.5$, $\sigma_1^2 = 2.0$,	$\sigma_2 = 1.5 \text{ then } Z =$
A) 2.58 B) 1.58 C) 13.58	D) 20.58
38. If n=5 $\sum x = 15$, $\sum y = 204$, $\sum xy = 748$, $\sum x^2 = 55$, a	F 3
squares, a=	L J

	A) 0	B) 1	C) 2	D) Non		1 01	
	39.If n=5 $\sum x = 15$, $\sum y = 204$, $\sum xy = 748$, $\sum x^2 = 55$, and y=a+bx then by the method of squares, b=						east]
	A) 0	B) 13.6	C) 2		D) None	1 (1	
	40. If $n=9 \sum x = 72, \sum x = 72$ squares, $a=$	$\sum y = 36, \sum xy = 282,$	$\sum x^2 = 588$, and y=a+	-bx then	by the metho	d of lea	ast 1
	A)8	B)9	C)10	D)20		L	J
			<u>UNIT-V</u>				
1	A t growing in	about 0				г	1
1.	A t-curve isA) Symmetric	B) Asymmetric	C) Uniform		D) Multimod	l lal	J
2.	Chi-square distributio	on				[1
	A) Symmetrical	B) Continuous	C) Uniform		D) Multimod	lal	-
3.		ample size n, the degree B) $n-1$			D) $n-2$]
4	A) <i>n</i>	,	C) $n+1$		D) n-2	г	7
4.		s = 1.955 and the sam	1 1	=	D) 4 100	[J
	A) 1.199	B) 2.199	C) 3.199		D) 4.199		
5.	The deviations of obs A) Chi-square	erved frequencies from B) F	n expected frequencies C) t	are used	l in _test D) None	[]
6.	If $\bar{x} = 14.9, \mu = 14, s =$	= 0.42 and the sample s	size is 5 then t =			[]
	A) 4.29	B) 3.29	C) 2.29		D) 1.29		
7.	If $\bar{x} = 31, \bar{y} = 28, s = 3$	$2.13, n_1 = 6$ and $n_2 = 7$ t	hen t =			[1
	A) 1.53	B) 2.53	C) 3.53		D) 4.53	_	-
8.	If $S_1^2 = 666.7$, $S_2^2 = 1$	109.33 then F =				[1
	A) 0.66		C) 2.66		D) 3.66	L	
9.	If $S_1^2 > S_2^2$ then F=					[]
	A) $\frac{S_1^2}{S_2^2}$	B) $\frac{S_2^2}{S_1^2}$	C) $\frac{S_1}{S_2^2}$		D) $\frac{S_2}{S_1^2}$		
			S_2^2		S_1^2	-	-
10.	Range of F-distribution A) $0to\infty$	B) $-\infty to \infty$	C) −∞ <i>to</i> 0		D) None	[J
11.	In a goodness of fit te	st, the degrees of freed	om are			[]
	A) k-1	B) k+1	C) n-k		D) n+k		
12.	The t-test is applicabl A) =30	e to samples for which B) >30	n is C) <30		D) None]
13.	<i>'</i>	used to test the equality	<i>'</i>	ce	,	[]
	A) Chi-square	B)t	C) F		D) None	_	_
14.	The shape of t-distrib A) Chi-square	ution is similar to that (B) Uniform	of distribution C) t		D) Normal	Ĺ]
15.	If $\bar{x} = 46, \bar{y} = 57, S =$	$11.03, n_1 = 5 and n_2 = 7$	7 then $ t =$			[]
	Probability & Statistic	es					

B) 1.7	C) 3.7	D) 4.7	
= 666.7 then F =]]
B) 1.66	C) 2.66	D) 3.66	
]]
B) $\frac{S_2^2}{S_1^2}$	C) $\frac{S_1}{S_2^2}$	D) $\frac{S_2}{S_1^2}$	
S		[]
,	C) Discrete	_	-
	C) Right]
,	· •	_]
B) Left	C) Positive	D) Negative	J
s used to test the equa	lity of nonulation means	ſ]
B) F	C) t		J
_		[]
$\mathbf{B}) - t_{\alpha}$	C) $t_{\alpha-1}$	D) - $t_{\alpha-1}$	
1055 14	1	r	7
	1.1]
B) 1.05	C) 2.05	D) 3.05	
$=11.03, n_1 = 6$ and $n_2 =$	=7 then t =]]
B) 4.79	C) 3.79	D) 1.79	
-1200 than F -		Г	1
	C) 4.09		J
,	<i>'</i>	*]
B) $n-1$	C) $n+1$	D) $n-2$	-
		[]
-	C) Non-negative	D) Zero	
		[]
$\mathbf{B})\frac{1}{F_{\alpha}(\nu_1,\nu_2)}$	C) $F_{\alpha}(v_1, v_2)$	$D) \frac{1}{F_{\alpha}(v_2, v_1)}$	
ole to samples for whi	ch n is	[]
B) >30	C) <30	<i>'</i>	_
on is	$\frac{C}{1} - \infty to0$]
b)	C) 50100	D) None	
]
B) F	C) t	D) None	
= 5 then $ t =$		[]
B) 3.82	C) 2.82	D) 1.82	
	B) 1.66 B) $\frac{S_2^2}{S_1^2}$ B) Continuous skewed B) Left stribution are always B) Left s used to test the equal B) F B) $-t_{\alpha}$ 3.5, $s = 1.955$ and the s B) 1.05 =11.03, $n_1 = 6$ and $n_2 = 8$ B) 4.79 =1200 then $F = 8$ B) 2.09 sample size n, the degree of	B) 1.66 C) 2.66 B) $\frac{S_2^2}{S_1^2}$ C) $\frac{S_1}{S_2^2}$ B) Continuous C) Discrete skewed B) Left C) Right contribution are always B) Left C) Positive Solve used to test the equality of population means B) F C) t B) $-t_{\alpha}$ C) $t_{\alpha-1}$ C)	B) 1.66

			QUESTION BANK	2019
33. The total area unde A) 0	er a t-curve equals B) -1		D) None	1
,	,	,	,	1
	s used to make inference B) F	cs for one population s C) t	D) None	J
35. If $\bar{x} = 1.77, \bar{y} = 1.9$	$93, S = 0.157, n_1 = 6$ and $n_2 = 6$	$n_2 = 6 $ then $ t =$]]
A) 0.77	B) 2.77	C) 3.77	D) 1.77	
36. If $S_1^2 = 10$, $S_2^2 = 9.5$	82then F =		[]
A) 1.018	B) 2.018	C) 3.018	D) 1.77	
37. Whether the test i	s one tailed or two tailed	depends on	hypothesis []
A) Null	B) Alternate	C) Simple	D) none	
38. If arrival rate is 3	per hour &service rate i	s 5 per hour then traffi	c intensity is []
A) $\frac{4}{5}$	B) $\frac{3}{2}$	C) $\frac{3}{5}$	D) none	
39. The shape of t- dist	ribution is similar to that o	of	[1
A) Chi – square distr			stribution D) none	-
	accepted, then the result i]
A) Null significant	B) Significant	C) Error	D) none	